A cotton gene encoding novel MADS-box protein is preferentially expressed in fibers and functions in cell elongation.
نویسندگان
چکیده
Cotton fibers, as natural fibers, are widely used in the textile industry in the world. In order to find genes involved in fiber development, a cDNA (designated as GhMADS11) encoding a novel MADS protein with 151 amino acid residues was isolated from cotton fiber cDNA library. The deduced protein shares high similarity with Arabidopsis AP1 and AGL8 in MADS domain. However, the GhMADS11 protein (being absent of the partial K-domain and normal C-terminus) is shorter than AP1 and AGL8 by the reason of gene frameshift mutation during evolution. The experimental results revealed that GhMADS11 was not a transcriptional activator, and it did not form homodimer. GhMADS11 transcripts were specifically accumulated in elongating fibers, but no or very low signals of its expression were detected in other tissues of cotton. Overexpression of GhMADS11 in fission yeast promotes atypical cell elongation by 1.4-2.0-fold. Furthermore, morphological analysis indicated that the transformed cells expressing GhMADS11m, a MIKC-type derivative of GhMADS11 by the site-directed mutation, displayed the same phenotype as that of the transformed cells with GhMADS11. The concurrence of these data sets suggested that GhMADS11 protein may function in fiber cell elongation, and its MADS domain and partial K-domain are sufficient for this function.
منابع مشابه
The dual functions of WLIM1a in cell elongation and secondary wall formation in developing cotton fibers.
LIN-11, Isl1 and MEC-3 (LIM)-domain proteins play pivotal roles in a variety of cellular processes in animals, but plant LIM functions remain largely unexplored. Here, we demonstrate dual roles of the WLIM1a gene in fiber development in upland cotton (Gossypium hirsutum). WLIM1a is preferentially expressed during the elongation and secondary wall synthesis stages in developing fibers. Overexpre...
متن کاملIdentification and Profiling of microRNAs Expressed in Elongating Cotton Fibers Using Small RNA Deep Sequencing
Plant microRNAs (miRNAs) have been shown to play essential roles in the regulation of gene expression. In this study, small RNA deep sequencing was applied to explore novel miRNAs expressed in elongating cotton fibers. A total of 46 novel and 96 known miRNAs, primarily derived from the corresponding specific loci in genome of Gossypium arboreum, were identified. 64 miRNAs were shown to be diffe...
متن کاملGenetic Mapping and Characteristics of Genes Specifically or Preferentially Expressed during Fiber Development in Cotton
Cotton fiber is an ideal model to study cell elongation and cell wall construction in plants. During fiber development, some genes and proteins have been reported to be specifically or preferentially expressed. Mapping of them will reveal the genomic distribution of these genes, and will facilitate selection in cotton breeding. Based on previous reports, we designed 331 gene primers and 164 pro...
متن کاملHbMADS4, a MADS-box Transcription Factor from Hevea brasiliensis, Negatively Regulates HbSRPP
In plants MADS-box transcription factors (TFs) play important roles in growth and development. However, no plant MADS-box gene has been identified to have a function related to secondary metabolites regulation. Here, a MADS-box TF gene, designated as HbMADS4, was isolated from Hevea brasiliensis by the yeast one-hybrid experiment to screen the latex cDNA library using the promoter of the gene e...
متن کاملProteomic Identification of Differentially Expressed Proteins in the <italic>Ligon lintless</italic> Mutant of Upland Cotton (<italic>Gossypium hirsutum</italic> L.)
Cotton fiber is an ideal model for studying plant cell elongation. To date, the underlying mechanisms controlling fiber elongation remain unclear due to their high complexity. In this study, a comparative proteomic analysis between a short-lint fiber mutant (Ligon lintless, Li1) and its wild-type was performed to identify fiber elongation-related proteins. By 2-DE combined with local EST databa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta biochimica et biophysica Sinica
دوره 43 8 شماره
صفحات -
تاریخ انتشار 2011